
Concurrent write MPI/IO benchmarks on File Systems

Prakashan Korambath
∗

Institute for Digital Research and Education (IDRE)
University of California, Los Angeles, CA 90095

ppk@ats.ucla.edu
July 9, 2012

ABSTRACT
In this report we tabulated and plotted concurrent I/O bench-
marks on three different file systems namely a NAS, Panasas
and Lustre file system. We ran the same executable on two
file systems on one cluster because they were accessible on
that cluster. The same code was recompiled and similar
benchmark was ran on a remote cluster. We discuss the
write I/O performance on the three different file systems at-
tached to two clusters along with network topology. In the
benchmark each MPI processes is writing their own files. So,
the number of files are equal to the number of MPI processes.

Categories and Subject Descriptors
J.0 [Computer Applications]: General

General Terms
Performance, Storage, Concurrent write I/O

Keywords
Concurrent I/O, Lustre, pNFS, Parallel I/O

1. INTRODUCTION
The number of nodes and cores on Beowulf clusters [1] are
increasing as the price per core is coming down. That also
means more applications are now running MPI [2] or threaded
jobs that can take advantage of the availability of increased
cores. We are also seeing increasing number of commer-
cial and open source applications that support parallel dis-
tributed memory MPI jobs or shared memory OpenMP [3]
type jobs. As the machine size becomes larger and number
of users per cluster increases the data involved in compu-
tation is also increasing proportionately and is likely to be
in terabytes range for I/O intensive jobs. Only the applica-
tions that can fit all data in memory and do very little I/O

∗Corresponding author’s address: Prakashan Korambath,
5308 Math Sciences, University of California, Los Angeles,
CA 90095.

will be immune to this trend. The disk storage has the low-
est data bandwidth in the memory hierarchy starting from
CPU registers, L1 cache, L2 cache, RAM to disk storage.
The I/O intensive applications need to read data from files
on the disk at the beginning of the calculation, distribute
them across all processors if it was read by only the master
processes and write the data from computation on the disk
either by all processes or some of the processes involved. In
the MPI world the term processes is more appropriate to use
than processors because MPI can spawn multiple threads on
the same core although it is not advised due to performance
degradation. The I/O could become the bottleneck for those
applications that does lot of data reads and writes in a large
cluster environment with hundreds of nodes when many jobs
are competing for the limited I/O bandwidth. The applica-
tions that does frequent checkpoint for restart purpose can
also find their performance deteriorated by the limitations
on the I/O bandwidth.

The hardware resource to write and read data on disks to
and from the memory can come from widely varying archi-
tectures. If the data is written on local disks attached to
the node, the I/O speed is dependent up on the type of
hard disk, which can be traditional spinning magnetic hard
drives with varying spinning speeds or NAND based flash-
memory solid state drives (SSDs). SSDs have higher data
throughput and lower latency. A simple example of this
kind of scenario is when computations are done on a stan-
dalone desktop. A typical cluster server node on the other
hand will have at least a Network File System (NFS) [4]
mounted home directory as well as a local disk. Since mod-
ern server nodes have 8 to 16 cores per node, this kind of
node attached resources will at least be shared by the all
the threads of jobs running on that node. Typical measured
bandwidth for HDDs are in 100 to 200 MB/s region and in
SSDs bandwidth range from 100 to 500 MB/s. On a Linux
OS machine commands like ”hdparm -tT /dev/sda” or ”dd
if=/dev/zero of=/tmp/output.dat bs=8k count=256k”may
be used to measure the read-write bandwidth.

1.1 File Systems on Beowulf Clusters
Typically most clusters have a home directory connected to
a networked file system mounted through NFS protocol on
all the nodes. A cross mounted file system is a requirement
for running distributed memory parallel job or at least all
threads need to have identical path to find the executable.
The NFS home directories can be individual hard drives
mounted per user or for a group of users in a simplistic sce-

nario, but mostly the NFS home directories are served from
storage servers with disks in RAID [5] configuration. RAID
is a storage technology to combine multiple disks into a sin-
gle logical unit. The performance of RAID storage server is
dependent on the controller cards, type of hard drives and
the RAID level. A simplistic view consists of bunch of disks,
controllers and interconnect network to move the data. If
all nodes are connected to the home directory of the storage
server through a Gigabit switch, which may be the typical
scenario in small clusters, the aggregate bandwidth is going
to be limited by the Gigabit network speed, which in theory
is around 125 MB/s. Some of the clusters have at least 10
Gigabit connections to the I/O node, which will increase the
aggregate bandwidth to 1250 MBs/s in theory. Actual avail-
able bandwidth will additionally be limited by the buffer
size, memory cache and number of NFS threads etc. At
the hardware level data is accessed with certain granularity
in physical or logical blocks depending on the storage disk
array configuration. In addition the write speed and read
speed on a file system are going to be different depending
on the configuration of the file system. Although NFS is
the de facto standard for distributed file sharing in Beowulf
clusters, there are few other file systems as well. NFS pro-
tocol was originally developed by SUN Microsystems using
Sun Remote Procedure Calls (RPC) so that many clients
can communicate to a single server node. Global File Sys-
tems (GFS) from RedHat is another example of shared disk
file system [6].

1.2 Parallel File Systems
For Linux OS based clusters one of the earliest approaches
to mitigate data bandwidth problem was addressed by par-
allel virtual file system (PVFS) [8] using MPI ROMIO [13]
. Other examples of parallel file system include General
Parallel File System (GPFS) [7], Lustre [10], Parallel NFS,
Panasas [14], Fraunhofer Parallel File System (FhGFS) [15],
etc. Some of them are proprietary like GPFS and some are
open source software like PVFS. GPFS originally supported
AIX only, now it supports Linux as well. In a typical lo-
cal file system running on a Unix like OS, read or write calls
are blocking in nature meaning while a write request is being
performed access to that file is locked to protect the integrity
of the file and also make sure that the file is not overwritten
while it is being read by an active processes. The Portable
Operating System Interface (POSIX) I/O interface that is
commonly used by application developers for OS compati-
bility was designed for the local file system with open, close,
stat, read and write interfaces is sequential in nature. In or-
der to overcome such limitations during collective I/O calls,
the underlying storage file systems have a greater role to
play to meet challenges posed by large data-intensive appli-
cations. NFS version 3 tries to relax strict POSIX rules by
not defining a policy for caching on the client or server, but
in practice does not improve the performance much for par-
allel I/O. Additionally, atomic mode operation is not sup-
ported by NFS because it does not guarantee file system
level locking.

The simplest scenario of parallel data access in a MPI based
application is when each process is independently reading
and writing their own files that are not shared with any
other processes any time during the computation meaning if
they are writing out data they are all writing out to separate

files. The parallel access gets more involved when many
processes are accessing the same file at certain offsets in a
strided pattern or randomly. Concurrent file access and non-
contiguous file access are two major challenges for a parallel
file I/O operation.

In order for parallel I/O to be efficient their needs to have
as many hardware I/O resources as possible, there should
be multiple if not dedicated I/O connections between the
compute resources and the I/O resources and a high per-
formance network bandwidth to support concurrent data
transfer activities. In order for application developers in sci-
entific domain to take advantage of parallel efficiency, they
need to have good understanding of high level I/O library
API such as MPI-IO API or similar APIs, Parallel File Sys-
tem, storage hardware and network hardware. The paral-
lel file system in a nut shell is a software installed on the
hardware to manage the data on the hardware, present the
data as folders (directories) and files in hierarchical order,
and coordinate the access of these files in a manner that
doesn’t compromise the integrity of the files. The access to
the parallel file system is done usually through MPI-IO in-
terface which is part of MPI-2 implementation. MPI-IO is
perhaps the de facto standard for all parallel I/O interfaces
that is used in most of the parallel computing that we are
aware of. In addition there are higher-level API tools such
as HDF5[11], and parallel NetCDF[12], which are available
to use in combination with MPI-IO library in some scientific
domain. It is best to use MPI-IO library for parallel I/O be-
cause the implementers of this API has already put lot of
effort in optimizing the collective I/O performance and is
expected to be compatible with many parallel file systems
[16],[17].

In spite of availability all the API tools, the performance of
an application is still dependent on how the application is
using the I/O, it could be a simple beginning to end access
of a file, or a strided access with certain offset or a random
access. There is no one-size fit all strategy to benefit all
kinds of data access patterns. Because of these limitations
the performance of parallel I/O bandwidth is not guaranteed
to be good for all applications.

The developers of parallel file system have used various ap-
proaches to get efficiency and file consistency. Virtual block
device is one of those approaches where a mapping of logi-
cal blocks to physical storage is used to abstract away the
physical data location. This virtual approach makes it eas-
ier for data migration and duplication meaning data can be
migrated off from one device to another when installing new
devices or replacing devices.

1.2.1 GPFS
IBM’s GPFS file system uses virtual shared disks (VSD),
it only assumes block I/O interface and no intelligence at
the disk level. GPFS does not use volume management; in-
stead the files are striped across all the disks to give the
file system direct control over striping of data across the
devices. The individual disks are attached to several I/O
server nodes. GPFS uses distributed locking to synchronize
access to shared disks to protect the integrity of user data
during parallel read-write disk access. When two processes
are accessing the same file, read/write atomicity will make

sure either all or none of the concurrent writes operations are
visible to each processes such that writes to non-overlapping
data blocks of the same file proceeds concurrently. Recent
GPFS releases also supports data shipping where individual
servers can take responsibility for updating changes in data
blocks. Clients simply forward data belonging to a particu-
lar block to the appropriate node.

1.2.2 PVFS
Some of the parallel file systems distributed metadata on
all I/O servers while some store it in a single location. Dis-
tributing metadata is a complicated process, while single
metadata server is a potential performance bottleneck. The
open source parallel virtual file system (PVFS) developed
mainly for Linux clusters at Clemson University has two
kinds of servers, namely a single metadata server that main-
tains metadata of all files and many I/O servers to han-
dle storage of the data. File data is distributed in a round
robin fashion across I/O servers using a predefined algo-
rithm, which computes the file size as and when required. A
RAID configuration may be used to handle disk failures on
the I/O servers, however a node failure is not tolerated and
the system will become unavailable if a node fails. Also com-
puting the file size each time to list the files in a directory
may be a slow process as well.

1.2.3 Lustre
Another open source parallel file system is Lustre even though
it was acquired by SUN and then Oracle and supported com-
mercially. The Lustre architecture calls for (a) a metadata
server (MDS) that stores file names, directories, access per-
mission and layout; however, Lustre metadata server is not
actively involved in I/O operations, which will ease the load
on metadata server; (b) many object storage servers (OSS)
that store data on multiple object storage targets (OST); (c)
clients to access user data using standard POSIX semantics
to allow concurrent and coherent read and write access to
the files in the file system. The total capacity of a Lustre
file system is the aggregate capacity of OSTs. OSTs can be
organized with logical volume management (LVM) or RAID
or traditional SAN. OSTs perform their own block opera-
tion. When data is stored on traditional SAN resources,
OSTs only handle authentication and block allocation. Lus-
tre uses distributed lock manager to protect the integrity of
file data and metadata. Applications that do random I/O
access are not suitable for Lustre.

1.2.4 Panasas
The Panasas File system or PanFS is a parallel storage sim-
ilar to parallel NFS (pNFS) [18] protocol to overcome the
performance bottleneck of NFS file system by allowing many
clients to read and write data in parallel to and from physi-
cal storage systems. PanFS is a proprietary file system and
it may support pNFS clients in future. The NFS server con-
trols the metadata and coordinate access to the data. The
clients query the metadata server to get the location and
authentication details of the data and then directly com-
municates with the storage device. pNFS is part of NFS
version 4 protocol. pNFS clients are available in Fedora 16
as well as RHEL 6.2 distributions. Other prominent ven-
dors who contribute to pNFS include IBM, EMC, RedHat,
NetApp etc. The PanFS operating system offers three pro-
tocols to access files namely DirectFlow, NFSv3 and CIFS.

Typical Panasas storage hardware consists of storage blades
and director blades. Storage blade contains all applications
and user data. Director blade orchestrates all file system
activities and virtualize the data across all storage blades.

2. BENCHMARKS
For measuring concurrent parallel I/O benchmark, we used
a small program available at an Indiana University site [19].
In order to use this program the cluster should already have
an installation of an MPI API either from OpenMPI[20] or
MVAPICH2[21]. During run time this executable expects
two arguments, which are data file name and block size. The
size of the data file written can be increased or decreased by
altering the block size. Each processor appends its processor
id to the file name. So, if the job is run on 32 processors,
there will be 32 files of same size written on the directory
where job was run. Checking the name and size of the file
is a good indication of the completion of the job.

The program calls MPI_FILE_OPEN(comm, filename, amode,
info, fh) to open files for writing. The inputs for this API
calls are communication world (handle), filename (string),
file access mode (integer), and info. The output is a new file
handle. This program calls MPI_COMM_SELF communicator,
which is associated with just the process that called it. So
the file name is not shared with any other processes. Then
MPI_File_Write API is called to write the data to the disk.
The MPI_FILE_Write calls are enclosed within MPI_Wtime

call to time the wall clock time to finish the data write call.
The program uses MPI_Reduce call to find out the longest
time required to write the data. The transfer rate is com-
puted by dividing the longest time with total number of
bytes written. Additionally, the program does lot of error
checking to make sure files are open before proceeding to
write step.

We found this program well written for our benchmark pur-
pose to measure the maximum concurrent data write band-
width on a file system. All MPI processes are independently
writing their own files. None of the files are shared among
processes. We are aware of few other publicly available
benchmark routines as well. We hope to use them in fu-
ture studies.

2.1 Hoffman2 Cluster
Hoffman2 cluster [22] hosted by IDRE [23] consists of ap-
proximately 800 nodes currently. All nodes have either AMD
or Intel multi core CPUs with varying amount of RAM rang-
ing from 8 GB per node to 128 GB per node. The commu-
nication network fabric consists of both Gigabit and DDR
IB network ports and switches. This cluster was initially
started with 64 seed nodes from IDRE’s predecessor organi-
zation, Academic Technology Services (ATS) in 2007. Since
then many research groups have contributed nodes to this
cluster in a shared cluster concept. The owners of the nodes
are given full access to logical equivalent of contributed cores
for running their jobs contiguously for many days with the
understanding that any unused resources are shared among
all users in a 24 hour queue. Due to this kind of arrange-
ment cluster utilization for Hoffman2 is consistently above
85%. Hoffman2 cluster uses Grid Engine scheduler to man-
age and schedule cluster computing resources. Currently,
there are around 1000 users from math and physical sci-

A Section of Hoffman2 NAS Gigabit Network

BlueArc NAS

compute node

6509 Switch
 Data Center I

GE

compute node

GE

campus network

6509 Switch

10 GE

6509 Switch

10 GE

10 GE 10 GE

Figure 1: A section of Hoffman2 cluster network
showing the data path from compute nodes to NAS
storage

ences, engineering, business and social sciences disciplines
running various kinds of jobs on the Hoffman2 cluster. The
I/O bandwidth on the cluster has risen considerably due to
increase in number of nodes and jobs. Initially, the clus-
ter was supported only by a Blue Arc NAS file system, but
due to the heavy I/O demand another file system, namely
Panasas file system is also added to this cluster. The nodes
on this cluster are spread among three data centers in UCLA
campus. A single NAS and single Panasas file systems pro-
vide home directory and scratch directory for all the nodes
through a network of Gigabit and IP over IB connections.
All MPI message passing calls in this cluster are handled
exclusively by the DDR IB network fabric.

A schematic diagram of network connections from compute
nodes in one of the data centers to NAS Blue Arc storage
hardware is shown in Figure 1. As shown in Figure 1 the file
I/O on this cluster makes three hops before it reaches NAS.
The first hop between the compute nodes and a Cisco 6509
switch is through a GE connection, next hop is to a sec-
ond Cisco 6509 switch through 10 GE connection followed
by another 10 GE connection to the NAS. There are two
10 Gigabit up-links from two separate 6509 Cisco switches
to the Blue Arc NAS. This is expected to give an aggre-
gated 20 Gigabit bandwidth as well as redundancy in the
event one of the 6509 switches fails. The second pair of 6509
switches are connected to other data centers as well as to the
campus backbone to have access to login nodes. The nodes
and switches in the other two data centers are not shown in
Figure 1.

The Figure 2 shows the file I/O path from compute nodes
to the Panasas file system. This route uses IP over IB con-
nections through many small and large IB switches. The
data from a compute node will have to make at least 6 hops
before it reaches the Panasas file system. The IB network
traffic uses combination of 24 port Flextronics switch, 288
port SilverStorm 9240 switch and a 36 port Q-Logic 12200
switch before it reaches the Panasas IB router. There are
four QDR links from the Q-Logic switch to the Panasas IB
router as there are four IB routers in the Panasas hardware
shown in Figure 2. The Panasas IB router hardware in turn
is connected to a 5548 Switch through two aggregated 10
GE links. The director and storage blades on Panasas file
system is connected to 5548 switch through 10 GE links.

The network configurations on the second of the three data
centers are almost identical as described above. The third
data center, which is actually a performance optimized data
center (POD) from HP [24], uses combination of 48 ports
and 16 ports switches to connect to the 6509 switches which
are in turn connected to the NAS storage file system. The
maximum theoretical I/O bandwidth that can be expected
on Hoffman2 cluster will be around 2500 MB/s or 20 Giga-
bits per second.

Since the nodes on this cluster are being added continuously
during the last 5 years, not all nodes are identical in terms
of architecture and performance. Hence, it is practically
impossible to get identical server hardware to measure the
bandwidth on Hoffman2 cluster. So the bandwidths that we
reported in the tables below should be considered to be the
best case scenario considering the fact that this benchmark

Route to Panasas Storage from a Hoffman2 Node

Panasas

compute node

24 port DDR switch

20 Gb

288 port DDR switch

20 Gb

36 port QDR switch

20 Gb

QDR
 Panasas IBR v2

 4 units

40 Gb

5548 Switch

10 GE10 GE

10 GE

Figure 2: Network configuration for the route to
Panasas storage from a node

Table 1: Concurrent write bandwidth on Panasas
File System to write 32 MB size files

MPI Processes Write Speed (MB/s)
32 500
64 581
128 671
256 981
512 960
768 519

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 32 64 128 256 512 768
B

an
d

w
id

th
 in

 M
B

/s
 fo

r
co

nc
ur

re
nt

 w
rit

e

 Size of MPI jobs (concurrent writes)

MPI IO concurrent write bandwidth on Panasas file system on Hoffman2

Figure 3: Concurrent file write on Panasas File sys-
tem on Hoffman2 cluster for varying number of pro-
cessors

was run when no other users were present on the system in a
few hours window during one of the maintenance shutdown
schedules. The Hoffman2 cluster currently runs CentOS 6.2
Linux distribution and users Warewulf image provisioning
tools to deploy OS on compute nodes.

Table 1. shows the results of concurrent write bandwidth
benchmark ran from 32 processors to 768 processors. The
nodes used in this benchmark all have 8 cores per node and
they have either Intel or AMD dual quad core CPUs. The
peak bandwidth that was observed in this run is around 980
MB/s. Although the bandwidth results fluctuated between
50-100 MB/s in repeated runs the peak bandwidth hovered
around 980 MB/s. The fluctuation is expected consider-
ing the nature of the heterogeneity of the Hoffman2 cluster
server nodes. Also as shown in Figure 2 the data has to make
6 hops through different switches to reach the storage unit.
That may introduce additional latencies. The Table 1 results
are from the Panasas file system which is auto mounted on
all compute nodes as scratch directory /u/scratch and has a
total capacity of around 70 TB. The size of all files written
were 32 MB each for the result shown Table 1. The results
are plotted in Figure 3 as well with number of MPI processes
on the X-axis and I/O bandwidth in MB/s on the Y-axis.

Table 2. shows a similar concurrent write results as in Table
1, but on a NAS file system from Blue Arc. Again 32 to
512 processors were writing their own individual files to this
file system which happened to be the home directory for
majority of users at the same time. The nodes used in this

Table 2: Concurrent write bandwidth in MB/s on
Blue Arc NAS file system for 32 MB files

MPI Processes Write Speed (MB/s)
32 394
64 416
128 399
256 300
512 278

 0

 100

 200

 300

 400

 500

 0 32 64 128 256 512

B
an

d
w

id
th

 in
 M

B
/s

 fo
r

co
nc

ur
re

nt
 w

rit
e

 Size of MPI jobs (concurrent writes)

MPI IO bandwidth on NAS Blue Arc file system on Hoffman2 for concurrent writes

Figure 4: Concurrent file write on NAS Blue Arc
File system

run also has 8 cores per node. The peak write capacity
was around 416 MB/s. The results are plotted in Figure 4
as well. As can be seen in Figure 1, the number of hops in
this Gigabit only network configuration is three between the
compute nodes and the NAS storage.

The results shown in Table 3. is a test to see how the band-
width changes with file size. In the previous runs we used
a constant size of 32 MB, but in this experiment we varied
the data size from 32 to 512 MBs. The results from this ex-
periment which was ran on 512 processors with varied data
size did not show any significant change in file transfer rate.
Majority of the runs were around 900 MB/s. The results
are plotted in Figure 5 as well with file size on X-axis and
bandwith on Y-axis. This experiment shows the size of the
file in this range is large enough to mask any latency effects.

2.2 Gordon Cluster
Gordon cluster at SDSC [25] is specifically designed for data
intensive computing. The cluster consists of 1024 dual socket

Table 3: Concurrent write bandwidth in MB/s on
Panasas file system as a function of file size for 512
MPI processors

File Size (MB) Write Speed (MB/s)
32 917
64 807
128 918
256 899
512 975

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 32 64 128 256 512

B
an

d
w

id
th

 in
 M

B
/s

 fo
r

co
nc

ur
re

nt
 w

rit
e

 Size of files written in MB concurrently)

MPI IO concurrent write bandwidth for different file sizes on 512 processors

Figure 5: Concurrent file write on Panasas File sys-
tem on 512 processors vs. file size

A Section of Gordon cluster (SDSC) I/O network

Lustre File System

I/O Node

10 GE 10 GE

I/O Node

10 GE 10 GE

16 compute nodes

IB Switch

QDR IB

IB Switch

QDR IB

16 compute node

IB Switch

QDR IBIB Switch

QDR IB

QDR IB

QDR IB

QDR IB

QDR IB

QDR IB

QDR IB

QDR IB

QDR IB

Figure 6: A section of Gordon cluster I/O network
showing two 16 compute nodes block and Lustre file
system

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 32 64 128 256 512

B
an

d
w

id
th

 in
 M

B
/s

 fo
r

co
nc

ur
re

nt
 w

rit
e

 Size of MPI jobs (concurrent writes)

MPI IO concurrent write bandwidth on Lustre file system on Gordon

Figure 7: Concurrent file write on Lustre File sys-
tem on Gordon cluster for varying number of pro-
cessors

Intel Sandy Bridge nodes (Xeon E5 processors) with 64 GB
DDR3 RAM per node. This chip implements Intel Advanced
Vector Extensions (AVX) with the capability of 8 operations
per clock cycle. Please keep in mind that previous genera-
tion chips compute 4 operations per cycle. It also has 300
TB of flash memory SSDs. This cluster employs vSMP soft-
ware from ScaleMP [26] to aggregate the SMP memory on
all nodes for serial and threaded applications. Additionally,
a QDR IB network in 3D Torus configuration provides com-
munication interconnect fabric. The frequency of each CPU
is around 2.6 GHz. In this paper we used the Data Oa-
sis Lustre file system with 4 PBs of capacity and sustained
bandwidth of 100 GB/s. Each of the Gordon nodes have 16
cores. Each of those 16 nodes are connected to an I/O server
node and there are 64 of them. For failure redundancy actu-
ally two I/O nodes are connected to two sets of 16 compute
node blocks. The I/O nodes in turn are connected to the
Lustre file system through dual 10 GE links. The Compute
nodes are connected to I/O nodes through QDR IB links at
40 Gb/s. The operating system is CentOS Linux version 5.6
with modifications to support AVX and uses Rocks cluster
management tools. The MPI implementation on this cluster
uses MVAPICH2. The jobs are scheduled on this cluster us-
ing Catalina Scheduler and Torque resource manager. The
maximum I/O bandwidth from one I/O node to Lustre file
system is around 1.6 GB/ write speed. So a careful com-
bination of nodes per core is required to get the maximum
throughput bandwidth from this cluster. For this study we
used all cores per node so that we have similar comparison
to the Hoffman2 cluster bandwidth where all cores on a node
is used in the MPI-IO write.

Table 4 and Figure 7 shows results from concurrent write
benchmark bandwidth measurement from 32 to 512 proces-
sors. The peak value we got hovered around 4 GB/s. The
repeated measurements will change the value by few hun-
dred MB/s because our jobs are not the only jobs that are
running on this system during this benchmark. So, these re-
sults are representative of a typical expected bandwidth on
a production cluster. These are not the best case scenario,
but more like an expected bandwidth. For highly bandwidth
depended applications one can reduce the number of cores

Table 4: Concurrent write bandwidth on Lustre File
System on Gordon Cluster at SDSC to write 32 MB
size files

MPI Processes Write Speed (MB/s)
32 2818
64 4169
128 3382
256 1662
512 3374

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 32 64 128 256 512 1024

B
an

d
w

id
th

 in
 M

B
/s

 fo
r

co
nc

ur
re

nt
 w

rit
e

 Size of files written in MB concurrently)

MPI IO concurrent write bandwidth for different file sizes on 512 processors on Gordon

Figure 8: Concurrent file write on Luster File sys-
tem on 512 processors vs. file size

per nodes inside the submission script. In this experiment
we requested all cores in a node.

Table 5 and Figure 8 shows results when processor numbers
are fixed at 512 and the file size is changed. The spread in
value again displays the expected bandwidth depending on
which set of processors are allocated to our job. Due to the
careful configuration of File I/O network, Gordon cluster
seems to give consistently satisfactory data bandwidth.

3. CONCLUSIONS
In conclusion a parallel file system is a must for any Be-
owulf cluster of any size because parallel I/O can throttle
the computation speed. Jobs that are I/O dominated can
be pushed back to CPU dominated if the I/O bottleneck can
be well taken care of. It is also important to have as many
dedicated I/O servers as possible because it will give the sys-
tem administrators of the cluster a fine control to prevent a

Table 5: Concurrent write bandwidth in
MB/seconds on Lustre file system as a function of
file size for 512 MPI processors

File size (MB) Write Speed (MB/s)
32 3374
64 3439
128 4109
256 4025
512 4102
1024 7273

single application from dominating total I/O bandwidth. In
other words by distributing the total I/O bandwidth among
many compute servers and allocating compute resources in
groups of nodes, which have dedicated I/O servers, one can
make sure the data bandwidth from one set of jobs is not
affecting the bandwidth for jobs on another set of computa-
tional nodes and I/O servers. Also minimizing the number
of hops between the compute nodes and the storage unit will
improve the performance of applications.

4. FUTURE WORKS
In this report we did not perform any concurrent read bench-
mark or write and read from many processors to a single file.
Those works will be performed and reported in the upcoming
reports along with some benchmarks on solid state devices.
We will also be investigating application based benchmarks
like NAS parallel I/O benchmark routines.

5. ACKNOWLEDGMENTS
We would like to acknowledge UCLA’s Cyberinfrastructure
grant for the informatics and computational data develop-
ment for funding the projects under Virtual Computing Lab-
oratory. We also thank XSEDE organization for granting
us compute time on SDSC’s Gordon cluster. Discussions
with other staff members of IDRE has improved the qual-
ity of contents presented in this technical report. In par-
ticular author like to acknowledge the information shared
by Mahidhar Tatineni of SDSC HPC staff on the network
topology of Gordon cluster. Contributions from Justin Tea,
John Pedersen, and Brian Pape of IDRE in the description
of network topology of Hoffman2 cluster is also acknowl-
edged. Shao-Ching Huang of IDRE shared his expertise in
plotting graphs and preparing the manuscripts with various
latex packages.

6. REFERENCES
[1] William W. Hargrove, Forrest M. Hoffman and

Thomas Sterling The Do-It-Yourself Supercomputer
Scientific American, 265 (2): pp. 72 - 79 2011

[2] MPI Forum:. http://www.mpi-forum.org/

[3] OpenMP: http://openmp.org/wp/

[4] Russel Sandberg , David Goldberg , Steve Kleiman ,
Dan Walsh , Bob Lyon Design and Implementation or
the Sun Network Filesystem 1985 USENIX

[5] David A. Patterson, Garth Gibson, and Randy H.
Katz A Case for Redundant Arrays of Inexpensive
Disks (RAID) UC Berkeley, (1988) SIGMOD, ACM.

[6] GFS: Global File System
http://en.wikipedia.org/wiki/GFS2

[7] Frank Schmuck ”GPFS: A Shared-Disk File System
for Large Computing Clusters” In Proceedings of the
FAST’02 Conference on File and Storage Technologies.
Monterey, California, USA. USENIX 2002

[8] Philip H. Carns,Walter B. Ligon III,Robert B. Ross,
and Rajeev Thakur. PVFS: A parallel file system for
Linux clusters. In Proceedings of the 4th Annual
Linux Showcase and Conference, pages 317-327,
Atlanta, GA, October 2000. USENIX

[9] Robert Latham, Robert Ross and Rajeev Thakur
Implementing MPI-IO Atomic Mode and Shared File
Pointers Using MPI One-Sided Communication

International Journal of High Performance Computing
Applications 2007 21: 132

[10] Lustre Lustre Parallel File System http:

//en.wikipedia.org/wiki/Lustre_(file_system)

[11] HDF5: Hierarchical Data Format
http://www.hdfgroup.org/HDF5/

[12] NetCDF: Network Common Data Form
http://www.unidata.ucar.edu/software/netcdf/

[13] MPICH2:. http:

//www.mcs.anl.gov/research/projects/mpich2/

[14] Panasas: http://www.panasas.com/.

[15] FhGFS: High-performance parallel file system from
the Fraunhofer Competence Center for High
Performance Computing
http://www.fhgfs.com/cms/.

[16] Prost, J.-P., Treumann, R., Hedges, R., Jia, B., and
Koniges, A MPI-IO/GPFS, an optimized
implementation of MPI-IO on top of GPFS, in
Proceedings of SC2001, Denver, Colorado 2001

[17] Francisco Javier Garćıa Blas and Florin Isaila and
Jesús Carretero and Thomas Grossmann,
Implementation and Evaluation of an MPI-IO
Interface for GPFS in ROMIO, Proc. of the 15th
European PVM/MPI Users’ Group Meeting (Euro
PVM/MPI 2008) 2008

[18] Parallel NFS: http://www.pnfs.com/

[19] Benchmark routines for parallel I/O.
http://beige.ucs.indiana.edu/I590/node86.html.

[20] OpenMPI: Open Source High Performance
Computing; MPI-2 Implementation
http://www.open-mpi.org/

[21] MVAPICH2: MPI-2 over OpenFabrics-IB,
OpenFabrics-iWARP, PSM, uDAPL and TCP/IP
http://mvapich.cse.ohio-state.edu/overview/

mvapich2/

[22] Hoffman2 Cluster:. Hoffman2 general purpose cluster
hosted by IDRE.
http://www.ats.ucla.edu/clusters/hoffman2/.

[23] IDRE:. Institute for Digital Research and Education,
UCLA. http://www.idre.ucla.edu

[24] POD:. Performance Optimized Data Centers .
http://hp.com/go/pod

[25] Gordon: Data-Intensive Supercomputing.
http://www.sdsc.edu/supercomputing/gordon/

[26] Versatile SMP: Aggregating multiple x86 systems into
a single virtual x86 system. http://www.scalemp.com/

