
Investigating Private Cloud Storage Deployment using
Cumulus, Walrus, and OpenStack/Swift

Prakashan Korambath
∗

Institute for Digital Research and Education
(IDRE)

5308 Math Sciences
University of California, Los Angeles, CA 90095

ppk@ats.ucla.edu

Narcis Madern
Institute for Digital Research and Education

(IDRE)
5308 Math Sciences

University of California, Los Angeles, CA 90095
narcismadern@gmail.com

ABSTRACT
In this paper we describe our experience in investigating pri-
vate cloud storage solutions and architectures for long-term
data archival storage purpose. The storage solution needs in
a campus research environment requires reliability and scal-
ability up to petabytes of data at the minimum. The key
requirements for a reliable and scalable cloud storage archi-
tecture is discussed below along with performance bench-
marks on three different cloud storage tools. We deployed
three open source cloud storage tools based on REST APIs
namely Cumulus, Walrus, and OpenStack/Swift for this in-
vestigation in our data center.

Categories and Subject Descriptors
J.0 [Computer Applications]: General

General Terms
Management, Performance, Reliability, Storage

Keywords
Storage Cloud, Private Cloud, Data Transfer, Amazon’s Sim-
ple Storage Service (S3), Cumulus, Walrus, OpenStack/Swift

1. INTRODUCTION
In a typical data center hosting petabytes of storage, the
hardware components in the storage machine are expected
to fail randomly, but the access to data needs to be per-
sistent through duplication or some other means, meaning
users should not be forced to re-run the experiment or cal-
culation due to the loss of data. One of the reasons why
continuous failure has to be accounted is because we want
to use commodity of the shelf hardware (COTS) to bring

∗Corresponding author’s address: Prakashan Korambath,
5308 Math Sciences, University of California, Los Angeles,
CA 90095.

down the cost of storage as low as possible. The storage
system also needs to be decentralized to avoid single point
of failures. Users need to be able to upload or download the
data even when some of the hardware in the storage sys-
tem is failing except for Internet connections. The system
needs to handle the failures as a normal operation without
impacting the performance to the user side. Manual admin-
istration requirement for storage system should be minimal.
Users need to be authenticated and authorized in advance of
data transfer and any hostile users need to be kept away. Ac-
cess to the data should be feasible from desktops or servers
running any operating systems such as Linux, Windows or
Mac and the commands to do data transaction needs to be
something as simple as put (object, file) and get (object,
file).

We have no need for any relational database based solutions
because we do not require complex query to figure out the
relevance of the data stored in a folder as most of the data
are transferred back and forth from a user home directory on
a compute cluster or desktop. Our query model simply needs
to list a set of folders and files belonging to an account. Users
typically name the folders with some meaningful names or
keep a README file inside the folder that describes the con-
tents of the files. So retrieving the README file should be
sufficient enough to help the users decide whether to down-
load the entire folder or not. We do not require any pro-
tection from accidental overwrite or deletion. We expect all
users of this system acknowledge the consequences of their
action in advance and do not provide any safety mechanism.
During the upload of the data, when there is a conflict of
updating from multiple events, the last write wins strat-
egy is quite appropriate for our purpose. The architecture
should preferably support access control lists (ACL) so that
researchers can grant read or write permissions to their col-
laborators. We do not expect this data to be available for
a real time computation such as mounting through a NFS
server for application job runs. Preferably, we would like
to have some way of restricting storage capacity per user
through a quota system or some sort of metering the re-
source. Since we expect storage need per user or the need
for additional users increase continuously, we should be able
to add more disks and servers to the storage system with-
out any interruption in the service. The cloud architecture
needs to satisfy the essential characteristics outlined in the
NIST definition of cloud computing [1] such as on-demand
self-service, broad network access, resource pooling, rapid



elasticity and measured service.

2. POTENTIAL OPEN-SOURCE CLOUD STOR-
AGE TOOLKITS

Based on the the limited requirements described above, we
could use Amazon Simple Storage Service, popularly known
as Amazon S3 [2], for our reliable storage need. There are
several advantages in using Amazon S3 services, one of most
appealing is its scalability to any amount of storage that
user is willing to pay for. Stored data can be encrypted to
be safe from any hostile activities. Also, one doesn’t need
to operate expensive data centers or have expertise in in-
stalling and maintaining a storage array. In this paper we
were intended upon building private cloud storage for stor-
ing the data that needs to be within the campus boundaries.
We already have space in our data center and have expertise
in operating Linux based servers. Also, having private stor-
age inside the data center will be cost effective when overall
cost including payment for network bandwidth is taken into
consideration. But the scalability of private cloud storage is
not going to be as good as that of public cloud storage. So
we looked at other S3 like cloud storage software that are
open source and compatible with S3. They include Cumulus
(IaaS:Nimbus) [3], Walrus (IaaS:Eucalyptus) [4] and Open-
Stack/Swift (IaaS:OpenStack/nova from Rackspace) [5]. All
of them use REST (Representational state transfer) [6] based
API to transfer data in and out of the storage hardware.
REST is an architecture style described in the context of
HTTP protocol for client server transactions with scalability
as one of the many goals. Clients initiate a request such as
put or get and server returns appropriate responses. GET,
PUT, POST and DELETE are the main HTTP methods
that the RESTful web-services typically use. Cumulus and
Walrus can store the data in a regular POSIX file system
where as OpenStack/Swift only supports block level stor-
age, however Swift architecture is highly scalable and pro-
vides configurable replication of files. Walrus also supports
Elastic Block level storage [7].

2.1 Cumulus
Cumulus is an open source implementation of Amazon S3
REST API distributed along with Nimbus IaaS toolkit. Python
programming language is used to implement REST services
in Cumulus. In particular, Twisted Web [8] is used for
HTTP and HTTPS calls. Cumulus can be used as a stand-
alone service to store data in and out of a storage machine or
for the data transfer needs during the deployment of virtual
computing images using Nimbus services. Although Cumu-
lus supports a variety of storage systems such as PVFS,
GPFS and HDFS, for this testing purpose we deployed cu-
mulus on a POSIX file system and measured the perfor-
mance using the open source REST client s3cmd [9]. Other
clients for transferring files are Boto [10] and jets3t [11].
The S3 like interface in cumulus allows client to write, read
and delete objects (objects here are equivalent of files) or
organize them into buckets (equivalent of directories). The
authentication mechanism in Cumulus is based on symmet-
ric key to ensure the data is securely accessed. There is a
local database (sqLite [12]) to store the access keys and ID
to authenticate and authorize the users who are accessing
the data. Cumulus also provides access control list (ACL)
to allow a group of users to share data for read or write.

Table 1: Data transfer bandwidth using Cumulus
cloud storage tools

Size (MB) Upload (MB/s) Download (MB/s)
100 25 21
200 20 21
500 26 28
1000 26 31
2000 25 32
4000 26 33
8000 26 33

Finally, it supports the storage quota, which is one of the
ways resource usage per user can be controlled.

2.1.1 Cumulus Benchmarks
We have installed Cumulus distributed along with Nimbus
version 2.7 on a server with AMD Opteron 2.0 GHz dual
core dual CPU and 8.0 GB RAM running CentOS Linux
OS. We carried out data uploads and downloads from a user
desktop to a cumulus storage system connected through a
public GigE network. The results of our measurement are
given in Table 1. The data range we tested is between 100
and 8000 MB. The rate of upload is between 25 and 27
MB/s. The data download in the same range is between
21 and 33 MB/s. We used the same open-source s3cmd
tool to perform the upload and download operation. The
performance of Cumulus is expected to be comparable to
that of ’scp’ like services. The scp bandwidth on the same
server is of the order of 30 MB/s. So, the results in Table 1.
are consistent with our expectations. More data on Cumulus
benchmark can be found in the paper by Bresnahan et. al.
[13]. Maximum theoretical bandwidth in a GigE network
is 125 MB/s. Typically one cannot expect more than 60-
90 MB/s I/O bandwidth on a single hard-drive in a server
connected to a GigE network. The data bandwidth can be
increased by using parallel file systems such as GPFS or
Lustre.

2.2 Walrus
Walrus is an Amazon S3 like cloud storage API distributed
along with Eucalyptus IaaS toolkit. Eucalyptus is an open
source implementation of Amazon EC2 to allow users to
configure and deploy virtual machines in a private cloud. In
order to run Walrus (Storage Controller) as a storage service
alone, Eucalyptus Cloud Controller is necessary at the min-
imum. Cloud Controller is a top level API, which manages
resource allocation, user accounts and the web interface for
cloud management services. Walrus also make use of Elastic
Block Level storage (EBS). Like S3, Walrus provides bucket-
based object storage and has interfaces that are compatible
with S3. REST based tools such as s3cmd or s3curl can be
used for transferring data into and out of Walrus storage
system. Walrus uses a JAVA based database for managing
user account information with cloud controller and accessing
meta-data of S3 buckets and objects stored in the database.
If there are multiple concurrent writes to same object, Wal-
rus uses the last write wins strategy. This is because Walrus
doesn’t impose file locking to achieve scalability.

2.2.1 Walrus Benchmarks



Table 2: Data transfer bandwidth using Walrus
cloud storage tools

Size (MB) Upload (MB/s) Download (MB/s)
100 52 31
200 50 32
500 42 42
1000 41 41
2000 35 42
4000 30 36
8000 32 36

We installed Eucalyptus version 2.0 on a server with Intel
Xeon 2.3 GHz Quad core dual CPU and 8.0 GB RAM run-
ning CentOS Linux OS. As in the case of Cumulus we have
measured the data transfer bandwidth for Walrus service
running on a POSIX file system from a desktop. We do
not use Elastic block storage system (EBS) for this mea-
surement. We used open-source s3cmd client version 0.9.8.3
along with a patch file provided at Eucalyptus website [14]
to upload and download files from our desktop to the server.
All the machines involved in this benchmark are connected
through a public GigE network and the data is directly writ-
ten to a local hard-drive. Before accessing Walrus each user
needs to obtain a pair of keys called access-key and secret-
key. Usually, this is obtained through a request on a web
interface. There are some default configurations which limit
the number of buckets and storage space per user. The com-
mand line interface tool s3cmd usually does not indicate the
exact cause of error if one of those limits are exceeded. So,
users should be aware of crossing such limitations. Also, the
errors in such situation will lead to instability in file upload
process.

We listed our results for uploading and downloading files
from user desktop to Walrus storage server in Table 2. The
upload bandwidth is between 52 MB/s to 30 MB/s. The
download bandwidth is between 31 and 42 MB/s. In the case
of Walrus upload seems to be faster than that of download.

2.3 OpenStack/Swift
Swift is a highly scalable open source cloud storage solution
from Rackspace using REST based APIs. The APIs are
written in Python programming language and is deployable
on servers that are running any Linux OS although Ubuntu
Linux 10.04 is the officially supported platform. Swift is
suitable for archival storage purpose where static data can
be uploaded for long term storage, retrieved for analysis or
writing over with new data. Swift is not suitable for real
time access as in mounting it through a NFS like service for
real time computation or for accessing data like in a SQL
database. Swift is designed to be scalable to Petabytes of
storage with tens of thousands of hard drives. OpenStack
also has a compute software API called nova for IaaS, but the
storage API can be installed standalone. The public API for
Swift is exposed through a proxy server. The proxy server is
responsible for finding the location of an account, container
or object in the ’ring’ and route the request accordingly.
The ring represents a mapping between the names of enti-
ties stored on the disk and their physical location. There are
three types of rings called account, object and container to
perform each kind of operation. Ring maintains a mapping

of zones, devices, partitions and replicas. Each replica usu-
ally up to 3 copies is guaranteed to reside in different zones.
A zone can be a drive, server, cabinet or a data center. The
user data are stored as binary files (blobs) on the file sys-
tem with meta-data stored in the file’s extended attributes
(XATTRS). An object server is responsible for facilitating
the storage and retrieval of the data files. Last write always
wins when multiple put operations are performed on the
same object and upon deletion all replicated copies are re-
moved as well. Swift runs a container server whose primary
object is to handle the listing of objects. Containers are sim-
ilar to directory names or file folders. The listings are stored
in a SqLite database. The account server is responsible for
listing the containers.

The Swift architecture uses a replication process ensuring
the data is protected in the event of disk failures and net-
work outages. It also make sure all copies are up to date to
the latest version and deleted data is removed from all the
replicated locations. The replication process is a push based
rsync operation. There is also an updater process which
will take care of updating the data in a queue during peri-
ods of high load. Auditors check for the integrity of objects,
containers and accounts and corrupted files. They will be
quarantined and replaced from another replica.

The ring-builder utility helps with the configuration of rings.
Typical configuration parameters are number of replicas,
zones, ports and devices. A zone is usually a group of de-
vices which are in the same physical location and network
address. Using the ring-builder, the storage can be reconfig-
ured at any time. However, depending upon the complexi-
ties and rebuilding process, the immediate data access may
be delayed for already saved data. If there are servers with
different capacity, appropriate weights can be added to let
Swift know the imbalance in the capacity of servers.

Although file size for downloading is unlimited, by default,
Swift limits the size of a single upload object to 5 GB. The
Swift script used for uploading the data has an option for
segmenting objects larger than 5 GB into smaller pieces and
upload them in segments. Swift will create a manifest file
so that all segments can be downloaded at once.

2.3.1 Swift Benchmarks:
We deployed a Swift 1.3.0 based storage system with one
proxy server and 5 storage servers configured to store up to
3 replicas of every uploaded objects. Our storage servers
have an additional hard drive to run operating system in
addition to 1 TB storage drive in each of the 5 servers. The
proxy server has only a single hard-drive to run operating
system. All servers are running Ubuntu Linux 10.04 64 bit
Linux OS. The hardware is made up of AMD Opteron 2.0
GHz dual core dual CPU and 4.0 GB RAM server with
slots for four SATA hard drives. Swift can be directly in-
stalled through apt-get command in Ubuntu Linux from the
Swift-core repository. However, the repository usually has
older versions and Swift is a fast developing software tool
(initially, we started with Swift 1.2.0 using this automated
process). So, a better solution is to download the tar files
and configure manually to use the specific version that we
are interested. The storage server hard drives are format-
ted with XFS file system. Since Swift requires extended



Table 3: Data transfer bandwidth using Open-
Stack/Swift cloud storage tools

Size (MB) Upload (MB/s) Download (MB/s)
100 17 27
200 18 17
500 21 30
1000 23 30
2000 27 18
4000 34 29
8000 34 23

attributes (XATTRS) to store the meta-data and XFS is
the only file system thouroughly tested by Rackspace, it is
the recommended one for using on the storage disks. The
operating system hard drives are formatted with ext4 file
system. Because installing RAID would degrade the perfor-
mance very quickly, it is not recommended on the storage
device. Insted of RAID, JBOD (just a box of disks) using
several SATA drives (connected through SATA cables) is the
preferred hardware configuration for Swift architecture and
it is the one we actually deployed.

The proxy server is exposed to public IP address and the
storage servers are all in a private subnet connected to the
proxy server through its private IP address on the same
subnet. The entire network is connected through a GigE
switch. It is advisable to use multiple proxy servers with 10
GigE network cards in a protection system.

The results of our measurement from a user desktop are
given in Table 3 for upload and download. The bandwidth
for upload varies from 17 MB/s to 34 MB/s and download
varies from 17 MB/s to 30 MB/s in the range of 100 MB to
8000 MB. As mentioned previously, when ever the data size
is larger than 5 GB, the upload process is done in segments.
In the case of 8 GB data we requested the upload script to
segment it into 1 GB pieces. The script, called ”Swift” (or
st), needs to be copied over to the desktops for upload pro-
cess to begin. In addition to this command line script there
are few GUIs like Cyberduck [15] which can be used to run
upload and download operations from a MAC or Windows
desktop.

3. CONCLUSIONS
We investigated three cloud storage tools, Cumulus, Walrus
and OpenStack/Swift. Figures 1 and 2 gives a comparison
of the upload and download performance of all three. The
results are average of 10 measurements. Their upload and
download performance are comparable, Walrus being little
faster than the other two for small data size. We are gener-
ally interested in the data size between 1000 MB and 4000
MB and, in that region, all three seem to have similar perfor-
mance. Normally, for small size of data that can be fit into
memory cache, I/O benchmarks appear fast because data is
committed to the disk much later. This may explain much
larger deviation in the observed bandwidth in 100 to 1000
MB region seen in the figures.

Cumulus offers little in terms of scalability unless one can
use expensive parallel file systems. We have not investigated
the elastic block storage (EBS) feature in Walrus yet. This

 0

 10

 20

 30

 40

 50

 60

100 200 500 1000 2000 4000 8000

B
an

dw
id

th
 in

 M
B

/s
ec

on
ds

Data Size in MB

Cumulus
Walrus

Swift

Figure 1: Comparison of upload bandwidth using
Cumulus, Walrus and Swift

 0

 10

 20

 30

 40

 50

 60

100 200 500 1000 2000 4000 8000

B
an

dw
id

th
 in

 M
B

/s
ec

on
ds

Data Size in MB

Cumulus
Walrus

Swift

Figure 2: Comparison of download bandwidth using
Cumulus, Walrus and Swift



will be one of our future works. However, we do have con-
cerns about the stability of Walrus system. Even though the
s3cmd client is very convenient, we observed that it did not
return proper error messages when something goes wrong
with configuration file or on the server side. So, users will
mostly need help from Walrus server administrator to figure
out why upload commands are not working correctly. Some
of the situations may arise when users exceed the number of
buckets or file-size limitations.

Based on the overall performance and scalability, we in-
tend to build a production level cloud storage using Open-
Stack/Swift in coming days. We also intend to continue our
benchmark with Elastic Block Storage on our Walrus server.
The benchmarks are run on three different servers. Although
they have similar hardware specifications, they are in differ-
ent networks. Thus we cannot comment on the cause of
differences in the benchmark data from three different ex-
periments. In the case of Swift architecture having a sin-
gle proxy server is a bottleneck when lots of operations are
performed at the same time, but that can be alleviated by
adding multiple proxy servers. For our investigative purpose
the results from those results have given us a good exposure
to three architectures. Overall, OpenStack/Swift seems to
be stable and scalable for the requirements we outlined.

4. ACKNOWLEDGMENTS
We would like to acknowledge UCLA’s Cyberinfrastructure
grant for the informatics and computational data develop-
ment for funding this work, especially Marsha Smith and
the reviewers of our storage proposal to perform this study.
Additionally, we would like to thank IDRE Research com-
puting group staff for discussions on cloud storage tools, es-
pecially Tajendra Vir Singh, Shao-Ching Huang, Qiyang Hu
(IDRE HPC group) and Bill Labate. We also thank Kendall
N. Houk for being the faculty sponsor for this project. We
thank Justin Tea for providing us network support. Finally,
we thank our colleagues at SDSC, Doug Weimer, Shava
Smallen and Ronald Joyce for sharing the details of their
storage architecture (Swift) deployment with us.

5. REFERENCES
[1] NIST:. The nist definition of cloud computing (draft).

http://csrc.nist.gov/publications/drafts/

800-145/Draft-SP-800-145_cloud-definition.pdf.

[2] Amazon:. Amazon Simple Storage Service (Amazon
S3). http://aws.amazon.com/s3/.

[3] Nimbus:. Open-source IaaS cloud similar to Amazon
EC2. http://www.nimbusproject.org/.

[4] D.Nurmi, R.Wolski, C.Grzegorczyk, G.Obertelli,
S.Soman, L. Youseff, and D. Zagorodnov. The
eucalyptus open-source cloud-computing system. In
Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid.
Washington, DC, USA: IEEE Computer Society,
2009. CCGRID 09, 2009.

[5] OpenStack/Swift:. Cloud Storage based on Rackspace
cloud storage API.
http://www.rackspace.com/;http:

//swift.openstack.org/index.html.

[6] REST:. Representational State Transfer, Fielding’s
dissertation:. http://www.ics.uci.edu/~fielding/

pubs/dissertation/rest_arch_style.htm.

[7] EBS:. Elastic block storage.
http://aws.amazon.com/ebs/.

[8] Twisted Matrix Labs:. Twisted web.
http://twistedmatrix.com/trac/wiki.

[9] s3cmd. command line s3 client:.
http://s3tools.org/s3cmd.

[10] boto:. Python interface to aws:.
http://code.google.com/p/boto/.

[11] Jets3t:. An open source java toolkit for amazon s3:.
http://jets3t.s3.amazonaws.com/.

[12] SqLite:. Serverless database:. http://sqlite.org/.

[13] Cumulus:. Papers and tech reports.
http://www.nimbusproject.org/papers/.

[14] Walrus:. S3-compatible tools for walrus.
http://open.eucalyptus.com/wiki/s3cmd.

[15] Cyberduck:. OpenSource GUI for FTP, SFTP,
WebDAV, Cloud Files, Google Docs, Amazon S3, and
OpenStack/Swift for Mac and Windows.
http://cyberduck.ch/.


